A magneto-hydrodynamically controlled fluidic network

نویسندگان

  • Haim H. Bau
  • Jianzhong Zhu
  • Shizhi Qian
  • Yu Xiang
چکیده

The paper describes fluidic networks consisting of individually controlled branches. The networks' basic building blocks are conduits equipped with two electrodes positioned on opposing walls. The entire device is either subjected to an external uniform magnetic field or fabricated within a magnetic material. When a prescribed potential difference is applied across each electrode pair, it induces current in the liquid (assumed to be at least a weak electrolyte solution). Analogously with electric circuits, by judicious application of the potential differences at various branches, one can direct liquid flow in any desired way without a need for mechanical pumps or valves. Equipped with additional, internally located electrodes, the network branches double as stirrers capable of generating chaotic advection. The paper describes the basic building blocks for such a network, the operation of these branches as stirrers, a general linear graph-based theory for the analysis and optimal control of fluidic magneto-hydrodynamic networks, an example of a network fabricated with low temperature, co-fired ceramic tapes, and preliminary experimental observations that illustrate that the ideas described in this paper can, indeed, be implemented in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamically tunable affinities for fluidic assembly.

Most current micro- and nanoscale self-assembly methods rely on static, preprogrammed assembly affinities between the assembling components such as capillarity, DNA base pair matching, and geometric interactions. While these techniques have proven successful at creating relatively simple and regular structures, it is difficult to adapt these methods to enable dynamic reconfiguration of the stru...

متن کامل

The Investigation of Giant Magneto Resistance in an Inhomogeneous Ladder Lattice

Abstract : The variation of the electrical resistivity of a material in the externalmagnetic field is known as magneto resistance. This phenomenon has been attractedboth theoretical and experimental researchers in miniaturization of magneto meters inthe recent years. In this paper, the magneto resistance of an inhomogeneous twodimensional conductor with ladder geometry i...

متن کامل

3D fluidic lens shaping--a multiconvex hydrodynamically adjustable optofluidic microlens.

Novel optical techniques for sensitive and reproducible fluorescence single cell analysis utilizing setups without single photon counting units are attractive for enhanced low-cost cell parameter screening. In this contribution we present the first microfluidic planar device to form an optofluidic adjustable convex lens with three-dimensional light focusing ability to improve optical sensor sys...

متن کامل

Electro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory

This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...

متن کامل

Microfluidic quadrupole and floating concentration gradient

The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows; however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016